home *** CD-ROM | disk | FTP | other *** search
/ Fritz: All Fritz / All Fritz.zip / All Fritz / FILES / EDUCMATH / KWIKST1.LZH / KSWHAT.330 < prev    next >
Text File  |  1992-11-27  |  8KB  |  166 lines

  1. What Analysis Should You Use?
  2. @1,You want to get descriptive statistics of SINGLE variable(s)
  3. @2,You want to get DESCRIPTIVE statistics of two RELATED variables
  4. @3,You want to COMPARE two variables, Independent or Paired
  5. @4,You want to COMPARE more than two variables, Independent or Related
  6. @5,You want to examine ASSOCIATION between two variables
  7. @6,You want to examine ASSOCIATION between more than two variables
  8. @7,Definitions of Terms Used
  9. ##1
  10. DESCRIPTIVE STATISTICS & GRAPHS      PROCEDURES TO USE
  11. ═══════════════════════════════      ════════════════════
  12.                ┌─ Data is ─────>     Mean, S.D., Box Plot, 5 number summary
  13.                │  Normal             Histogram, Conf. Interval
  14.                │                     (Stat Module, B, C, & E)
  15.                │
  16.                │─ Data not ────>     Median, Box Plot
  17.                │  Normal             Histogram, 5 number summary
  18. One Sample  ───│                     (Stat Module, B & E)
  19.                │─ Data is
  20.                │  Categorical──>     Frequencies, Pictogram
  21.                │                     (Crosstabs Module, B)
  22.                │
  23.                └─ Observations─>     Time Series Plot
  24.                   Over Time          (Stat Module, option G)
  25.  
  26. ##2
  27. DESCRIPTIVE STATISTICS & GRAPHS      PROCEDURES TO USE
  28. ═══════════════════════════════      ════════════════════
  29.                ┌─ Data are─────>     Pearson's Corr. Coeff. &
  30.                │  Normal             X─Y Scatterplot
  31.                │                     (Stat Module, option F &
  32.                │                     Regression Module option B & D)
  33.                │
  34. Two Samples────│─ Data not─────>     Spearmans Corr. Coeff. &
  35. (Related)      │  Normal             X─Y Scatterplot
  36.                │                     (Stat Module, option F &
  37.                │                     Regression Module, option D)
  38.                │
  39.                └─ Data are─────>     Crosstabulations and
  40.                   Qualitative        3─D Bar Chart
  41.                                      (Crosstabs Module,
  42.                                       options D & E)
  43.  
  44. ##3
  45. COMPARISON TESTS ─ TWO SAMPLES                    TEST TO USE
  46. ════════════════════════════════                  ═════════════════════
  47.                             ┌─ Data are─────>     Paired t─test
  48.                             │  Normal             (t─test & ANOVA Module,
  49.                             │                      Option C)
  50.               │───Samples───│─ Data not ────>     Freidmans Test
  51.               │   Related   │  Normal             (Non-Parametrics Module
  52.               │             │                      Option C)
  53.               │             └─ Data are
  54.               │                Dichotomous──>     McNemar's test
  55. Two Samples ──│                                   (Crosstabs Module,
  56.               │                                    Option F)
  57.               │             ┌─ Data are─────>     Ind. Group t─test
  58.               │             │  Normal             (t─test, ANOVA Module,
  59.               │             │                      option B)
  60.               │             │
  61.               │──Samples────│─ Data not─────>     Mann─Whitney U test
  62.                  Independent│  Normal             (Non-Parametrics Module,
  63.                             │                      Option B)
  64.                             │
  65.                             └─ Data are─────>     Chi─Square (Homogeniety)
  66.                                Qualitative        (Crosstabs Module,
  67.                                                    option D)
  68. ##4
  69. COMPARING MORE THAN TWO SAMPLES               TEST TO USE
  70. ═════════════════════════════════════════     ═════════════════════
  71.  
  72.                           ┌─ Data are─────>   Repeated Measures ANOVA
  73.                           │  Normal           (t─test & ANOVA Module,
  74.                           │                    Option C)
  75.                           │
  76.               ┌─Samples───│─ Data not ────>   Friedman ANOVA
  77.               │ Related   │  Normal           (Non-Parametrics Module,
  78.               │           │                    Option C)
  79.               │           └─ Data are
  80.               │              Dichotomous──>   Cochran's Q test
  81.               │                               (Non-Parametrics Module,
  82. More than     │                                Option D)
  83. Two Samples ──│           ┌─ Data are─────>   Independent Group ANOVA
  84.               │           │  Normal           (t─test & ANOVA Module,
  85.               │           │                    Option B)
  86.               │           │
  87.               └─Samples───│─ Data not─────>   Kruskal─Wallis
  88.                Independent│  Normal           (Non-Parametrics Module,
  89.                           │                    Option B)
  90.                           │
  91.                           └─ Data are─────>   Chi─Square Test
  92.                              Qualitative       (Crosstabs Module,
  93.                                                 Option D)
  94. ##5
  95.  
  96. TESTING ASSOCIATION BETWEEN TWO VARIABLES           PROCEDURE TO USE
  97. ═════════════════════════════════════════           ═════════════════
  98.  
  99.                               ┌─ Data are─────>     Pearson Correlation
  100.                               │  Normal             Simple Linear Regression
  101.                               │                     (Regression Module
  102.                               │                      Option B or D)
  103.                               │
  104.        Two Samples Related────│─ Data not ────>     Spearman Correlation
  105.                               │  Normal             (Regression Module,
  106.                               │                      option D)
  107.                               │─ Data are
  108.                               │  Qualitative──>     Chi-Square (Independence)
  109.                               │                      (Crosstabs Module,
  110.                               │                       Option D)
  111.                               └─ Data mixed────>    Spearman Correlation
  112.                                  Normal, Not        (Regression Module,
  113.                                  Normal              option D)
  114. ##6
  115.  
  116.  
  117. MORE THAN TWO ASSOCIATED VARIABLES           PROCEDURE TO USE
  118. ═════════════════════════════════════        ═════════════════
  119.  
  120.                        ┌─ Data are─────>     Multiple Regression
  121.                        │  Normal             (Regression Module,
  122.                        │                      Option C)
  123.                        │
  124. More than 2 Samples  ──│─ Data not─────>     Kendall partial rank─
  125. Related                │  Normal             correlation
  126.                        │                     (N.A.)
  127.                        │
  128.                        └─ Data are─────>     Discriminant Analysis
  129.                           Qualitative        (N.A.)
  130.  
  131.  
  132.  
  133. ##7
  134.                                   DEFINITIONS
  135.  
  136. NORMAL refers to data that are well approximated by a normal (Gaussian)
  137. distribution.
  138.  
  139. NOT NORMAL refers to quantative data that are not normally distributed.
  140.  
  141. CATEGORICAL refers to nominal data, such as male/female or brown/blue/black.
  142.  
  143. QUANTITATIVE refers to data that are numeric such as height, batting average,
  144. number of people per household, etc.
  145.  
  146. QUALITATIVE refers to data that describe attributes such as hair color,
  147. socioeconomic class, sex, etc.
  148.  
  149. ASSOCIATED refers to variables where knowledge of one helps predict the
  150. other.
  151.  
  152. INDEPENDENT refers to variables where knowledge of one does not help predict
  153. others. Usually, samples from unrelated populations.
  154. (continued)
  155. ##8
  156.                                   DEFINITIONS
  157.                                   (Continued)
  158.  
  159. RELATED refers to samples where multiple measures are taken on the same or
  160. related entities. For example, before after weights for a diet, or heights of
  161. twins.
  162.  
  163. DICHOTOMOUS refers to data that are categorical and can take on only one of
  164. two possible states. For example, yes,/no or on/off. VARIABLE refers to the
  165. observed measure, such as height, hair color, etc.
  166.